PATIENTS WITH BREAST cancer increasingly explore
on their own and ask their physicians about measures
treatment to enhance their prospects for survival, reduce their
risk of disease recurrence, relieve disease-related symp-
toms, and/or minimize side effects associated with conven-
tional treatment.1-6 To learn what scientific information was
available about the efficacy of complementary and alterna-
tive medical treatments (CAM) for women with breast
cancer, we reviewed the biomedical literature published in

METHODS

For the purposes of this review, we defined CAM as treatments that
are available to patients outside conventional medical settings and that
are not normally used in conventional settings to treat breast cancer or
its associated symptoms or treatment side effects.

We searched the mainstream biomedical literature for studies of
CAM used to treat patients with breast cancer. We grouped the
retrieved citations by intended end point as follows: (1) to alter disease
progression (eg, by prolonging survival, reducing tumor size, or
preventing recurrence or metastasis); (2) to alleviate symptoms caused
by breast cancer; (3) to relieve or prevent treatment side effects; and (4)
to improve immune function.

Within each end-point category, we grouped studies by modality
using a modified version of the classification system proposed by the
National Institutes of Health Office of Alternative Medicine, now the
National Center for Complementary and Alternative Medicine.7

We included studies that had immune parameters as end points
because, although their association with cancer progression and sur-
vival is poorly understood, immune factors are used as intermediate end
points in some conventional research.8,9 Patients often encounter
claims that a CAM treatment enhances immune function and is
therefore beneficial, as well as criticism of conventional medicine for
seeking to eliminate disease rather than to fortify the patient. Therefore,
although an effect on immune function may not predict a survival
benefit, we believed that it was necessary to review studies in which an
effect of CAM treatment on immune function was assessed.

METHODS

We searched 12 electronic databases and
and books on CAM and breast cancer. The re-
trieved articles were grouped by end point: breast
cancer (eg, tumor size, survival), disease-related symp-
toms, side effects of treatment, and immune function.
Within each end point, we organized the articles by
modality and assessed study design, findings, and
qualitative aspects.

Results: Of the more than 1,000 citations retrieved,
51 fit our criteria for review. Of the articles reviewed,
17 were randomized clinical trials; three of these were
trials of cancer-directed interventions, two of which
involved the same treatment (melatonin). Seven articles
were reports of phase I or II trials. Relatively few CAM
modalities reported used by many breast cancer pa-
tients were mentioned in articles retrieved by this pro-
cess. Most articles had shortcomings.

Conclusion: Although many studies had encourag-
ing results, none showed definitively that a CAM treat-
ment altered disease progression in patients with
breast cancer. Several modalities seemed to improve
other outcomes (eg, acupuncture for nausea, pressure
treatments for lymphedema). If CAM studies are well-
founded, well-designed, and meticulously conducted,
and their hypotheses, methods, and results are re-
ported clearly and candidly, research in this controver-
sial area should acquire credibility both in the scientific
community and among advocates of unconventional
medicine.

© 2000 by American Society of Clinical Oncology.
We excluded mind/body and psychosocial interventions in which the end point was psychological, such as using support groups or hypnosis to improve mood or body image or to relieve emotional distress. However, we included articles that reported the effects of support-group participation on biomarkers, such as immune cell function, or survival, and the effects of nutritional interventions on mood because these studies are based on hypotheses about mind–body relationships that are not part of conventional medicine.

Categorizing CAM treatments is difficult. For example, the Office of Alternative Medicine’s category “alternative systems of medical practice” is usually understood to refer to traditional (or ethnic) health-enhancing and healing practices such as traditional Chinese medicine and Ayurveda (a traditional medical/philosophical system from India). A few treatment agents and procedures, although part of such traditional systems, also have been studied outside the context of the system in which they originated. We have classified studies of such treatments according to their specific characteristics (eg, herbal medicine, energy therapy). We have also developed another category, “alternative programs of medical practice,” for multimodality treatment regimens not necessarily based on traditional medicine systems.

We limited our review to studies published from the beginning of 1980 through 1997. We included only studies published in English, although the literature available in other languages is probably extensive and should also be reviewed.

Table 1 lists the 12 electronic databases we searched as the first step in the review. In our searches, we used as key words “breast cancer” and “breast neoplasms” in combination with “alternative medicine,” “unconventional therapies,” “complementary therapies,” “holistic health,” and a long list of specific treatment terms (available from the authors on request). This process generated more than 1,000 citations and abstracts, from which we selected articles for retrieval and consideration. In addition we hand-searched the reference listings in review articles and books.

We excluded articles that described primary preventive interventions (those used or intended to be used by individuals who have never been diagnosed with breast cancer) or experimental agents available only through participation in conventional clinical trials, did not include breast cancer patients, focused on an end point of interest but not in relation to an intervention or treatment, did not involve an end point of interest, were secondary reviews only, were preclinical, were case reports, were published before 1980, or were written in a foreign language.

For each article, we identified the following: (1) details of the intervention (dosage, schedule); (2) intended end points; (3) study design; (4) sample size, including number of patients with breast cancer; and (5) findings. In addition, we assessed the quality of each article by the following criteria: (1) study participants: information about the study population, recruitment or selection procedures, and, where appropriate, inclusion and exclusion criteria; (2) justification: basis for the study hypothesis, including, where appropriate, review of literature; (3) sample size: whether sample size was adequate given the study design; (4) informed consent: mention of consent as having been obtained from study participants where appropriate given the study design; (5) specifics of the intervention: adequacy of information about the treatment and control procedures; (6) adverse-event reporting: specific data about adverse events or at least consideration of the possibility of adverse events or toxicity; and (7) measurement of outcomes: definition of end points and criteria for success and a quantitative description of results.

We tried to hold descriptions of the intervention to normal standards of clarity and completeness in conventional research. For some modalities, such as strictly psychosocial interventions, we considered that adverse-event reporting might not have been necessary, but we noted its absence.

RESULTS

Of the more than 1,000 citations generated by our search, most fell into the aforementioned exclusion categories. We obtained and reviewed 403 articles and, of these, excluded 352 because they, too, fit into one or more exclusion categories (Table 2). The remaining 51 articles described treatments that fit our definition of unconventional therapy and were studied in at least some patients with breast cancer. However, even within modalities, the specific treatments were too diverse to permit systematic comparisons. Tables 3 through 6 list the articles grouped by end-point category. Information is included about modality, dosage, end point(s), design, sample size, findings, and shortcomings.
<table>
<thead>
<tr>
<th>First Author, Year, Location</th>
<th>Modality</th>
<th>Dosage</th>
<th>End Points</th>
<th>Design</th>
<th>Sample Size</th>
<th>% Breast Cancer</th>
<th>Findings</th>
<th>Shortcomings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative programs of medical practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagenal,12 1990, United Kingdom</td>
<td>Bristol Cancer Help Center</td>
<td>Details of treatment regimen not specified</td>
<td>Survival</td>
<td>Cohort study</td>
<td>795</td>
<td>100</td>
<td>Center patients showed no significant survival benefits (RR = 1.26) compared with controls</td>
<td>Study participants, study justification, measurement of outcomes, informed consent for controls</td>
</tr>
<tr>
<td>Diet, nutrition and lifestyle change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brittenden,12 1994, United Kingdom</td>
<td>Oral L-arginine + chemotherapy, radiation therapy</td>
<td>10 g tid</td>
<td>Tumor size and histology</td>
<td>Phase II trial</td>
<td>24</td>
<td>100</td>
<td>22% complete response, 67% partial response, 89% experienced ≥ 50% reduction in tumor size</td>
<td>Study participants, study justification, informed consent</td>
</tr>
<tr>
<td>Hoffer,17 1993, Canada</td>
<td>Vitamin C, B2, Folic acid, Vitamin E, Other vitamins and minerals</td>
<td>12 g/d, 1.5-3.0 g/d, 5-10 mg/d, 800 IU/d, NS</td>
<td>Survival time</td>
<td>Retrospective cohort</td>
<td>170</td>
<td>24</td>
<td>23 adherent and 1 nonadherent alive at end of study (≈ 2 yrs); mean survival adherent group 4× that of nonadherent group</td>
<td>Study participants, study justification</td>
</tr>
<tr>
<td>Lockwood,47 1994, Denmark</td>
<td>Vitamin C, Beta carotene, Selenium, Gamma linoleic acid, n-3 fatty acids, Coenzyme Q10</td>
<td>2,850 mg/d, 325 IU/d, 387 μg/d, 1.2 g/d, 3.5 g/d, 90 mg/d</td>
<td>Survival, further metastases, weight loss, pain, remission</td>
<td>Phase II trial</td>
<td>32</td>
<td>100</td>
<td>No patients died, none showed signs of further metastases, no weight loss, reduced use of painkillers, 6 patients showed apparent partial remission</td>
<td></td>
</tr>
<tr>
<td>Recchia,46 1995, Italy</td>
<td>Retynil palmitate, Interferon β, Tamoxifen</td>
<td>50 IU bid, 10 IU 3×/wk, 10 mg tid</td>
<td>Survival, remission, disease stabilization</td>
<td>Phase II trial</td>
<td>36</td>
<td>100</td>
<td>31 mo median response duration, 64% response rate, 31% complete remission, 33% partial remission, 19% stable disease, 17% progressive disease</td>
<td></td>
</tr>
<tr>
<td>Recchia,49 1995, Italy</td>
<td>Retynil palmitate, Interferon β, Tamoxifen</td>
<td>15-50 IU bid, 10-30 IU 3×/wk, NS</td>
<td>Survival, remission, disease stabilization</td>
<td>Phase II trial</td>
<td>49</td>
<td>100</td>
<td>55% clinical response, 20% stable disease, 25% disease progression, 19.2 mo median survival</td>
<td></td>
</tr>
<tr>
<td>Herbal medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kovacs,50 1991, Switzerland</td>
<td>Iscador</td>
<td>0.33 mg/kg body weight, single IV infusion</td>
<td>DNA repair</td>
<td>Phase I trial</td>
<td>14</td>
<td>100</td>
<td>86% improved by day 7-8, DNA repair values 2.7 times higher</td>
<td>Informed consent</td>
</tr>
<tr>
<td>Mind/body control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gellert,51 1993, Santa Ana, CA</td>
<td>Peer support groups, family therapy, individual counseling, meditation and imagery</td>
<td>Weekly 90-min sessions</td>
<td>Survival</td>
<td>Retrospective cohort</td>
<td>136</td>
<td>100</td>
<td>Mean survival was 96 mo for intervention group and 85 mo for controls (P = 0.1)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Studies of Effects of Unconventional Therapies on Breast Cancer Progression
<table>
<thead>
<tr>
<th>First Author, Year, Location</th>
<th>Modality</th>
<th>Dosage</th>
<th>End Points</th>
<th>Design</th>
<th>Sample Size</th>
<th>% Breast Cancer</th>
<th>Findings</th>
<th>Shortcomings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgenstern, 1984, New Haven, CT</td>
<td>Support groups</td>
<td>90 min weekly</td>
<td>Survival</td>
<td>Retrospective cohort</td>
<td>136</td>
<td>100</td>
<td>Support groups and controls did not differ in survival (RR = 1.1; CI = 0.5-2.2)</td>
<td>Study participants, measurement of outcomes</td>
</tr>
<tr>
<td>Newton, 1983, Los Angeles, CA</td>
<td>Hypnosis and psychotherapy</td>
<td>1-10 1-hour sessions</td>
<td>Mortality, remission, disease stabilization, quality of life</td>
<td>Retrospective cohort</td>
<td>283</td>
<td>NS</td>
<td>Improved survival when compared with national and other center’s data, mortality lower with more treatment, of the 24 patients with more hypnosis and psychotherapy treatment, 9 were in full remission</td>
<td>Study participants, measurement of outcomes</td>
</tr>
<tr>
<td>Simonton, 1980, Ft. Worth, TX</td>
<td>Psychotherapy involving groups, individual counseling, relaxation, imagery</td>
<td>3-7 days of 6 to 9-h group sessions, then 5-day sessions every 3 mo</td>
<td>Survival</td>
<td>Retrospective cohort</td>
<td>225</td>
<td>33</td>
<td>Survival times of study patients were greater than those reported in the literature and national statistics</td>
<td>Study participants, measurement of outcomes</td>
</tr>
<tr>
<td>Spiegel, 1989, Stanford, CA</td>
<td>Self-hypnosis and support therapy</td>
<td>Weekly 90-min sessions</td>
<td>Survival</td>
<td>Randomized clinical trial</td>
<td>86</td>
<td>100</td>
<td>Median survival of both groups was 20 mo, mean survival in treatment group was 18 mo longer (P < .001)</td>
<td></td>
</tr>
<tr>
<td>Pharmacologic and biologic treatments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burzynski, 1987, Stafford, TX</td>
<td>Antineoplaston A5</td>
<td>25 mg to 2.5 g/d</td>
<td>Efficacy in tumor regression, side effects</td>
<td>Phase I trial</td>
<td>15</td>
<td>20</td>
<td>9 of 15 patients had tumor regression and/or reduced symptoms; 6 had mild adverse effects; fever, arthralgia, arrhythmias</td>
<td>Informed consent, study participants, study justification, measurement of outcomes</td>
</tr>
<tr>
<td>Lissoni, 1991, Italy</td>
<td>Melatonin</td>
<td>10 and 20 mg/d</td>
<td>Survival, disease progression</td>
<td>Phase II trial</td>
<td>54</td>
<td>6</td>
<td>21 of 54 had < 25% lesion increase, median survival 4 mo for the 3 breast cancer patients</td>
<td>Informed consent</td>
</tr>
<tr>
<td>Lissoni, 1994, Italy</td>
<td>MLT + IL-2 IL-2 alone</td>
<td>40 mg/d</td>
<td>Complete response: complete resolution clinically assessable disease at least 1 mo; partial response: some tumor regression; stable disease: no or minimal tumor growth; progressive disease: > 24% increase in lesions or new lesions; survival</td>
<td>Randomized clinical trial</td>
<td>80</td>
<td>9</td>
<td>Complete response in 3 of 41 IL-2+MLT patients and no IL-2-alone patients; partial response 8 of 41 IL-2+MLT group and 1 of 39 with IL-2 alone; stable disease in 12 of 41 with IL-2+MLT and 11 of 39 in IL-2-alone group; progressive disease in 18 of 41 with IL-2+MLT and 27 of 39 with IL-2-alone; 1-yr survival</td>
<td>Informed consent</td>
</tr>
<tr>
<td>First Author, Year, Location</td>
<td>Modality</td>
<td>Dosage</td>
<td>End Points</td>
<td>Design</td>
<td>Sample Size</td>
<td>% Breast Cancer</td>
<td>Findings</td>
<td>Shortcomings</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>--------</td>
<td>------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Lissoni, 28 1994, Italy</td>
<td>Melatonin Supportive care (corticosteroids and anticonvulsants)</td>
<td>20 mg/d</td>
<td>Survival and metabolic and infective complications</td>
<td>Randomized clinical trial</td>
<td>50 with brain metastases</td>
<td>20</td>
<td>Survival at 1 yr, free-from-brain-progression period and mean survival time were significantly higher in patients treated with melatonin (9 of 24 overall, 1 of 4 breast cancer) than in controls (5 of 26 overall, 1 of 6 breast cancer); steroid-induced metabolic and infective complications were significantly more frequent in those with supportive care only</td>
<td>Specifics of intervention</td>
</tr>
<tr>
<td>Lissoni, 29 1995, Italy</td>
<td>Melatonin Tamoxifen</td>
<td>20 mg/d</td>
<td>Disease progression, tamoxifen toxicity, serum IGF-1 and prolactin levels</td>
<td>Phase II trial</td>
<td>14 with metastases and history of failure to respond to tamoxifen alone</td>
<td>100</td>
<td>Partial response achieved in 6 of 14, 8 had stable disease and 2 progression; 10 patients survived > 1 yr from treatment onset; no melatonin-induced enhancement of tamoxifen toxicity; mean IGF-1 levels decreased ($P < .01$) and significantly more in responders ($P < .05$)</td>
<td></td>
</tr>
<tr>
<td>Moertel, 56 1981, Rochester, MN</td>
<td>Laetrile IV Oral</td>
<td>4.5-7 g/m² 0.5 g tid</td>
<td>Plasma and urine cyanide levels, metastases, progression</td>
<td>Phase I trial</td>
<td>6</td>
<td>NS</td>
<td>Few clinical side effects</td>
<td></td>
</tr>
<tr>
<td>Moertel, 57 1982, Rochester, MN</td>
<td>Laetrile IV Oral</td>
<td>4.5 g/m² 0.5 g tid-qid</td>
<td>Tumor regression, survival, disease progression</td>
<td>Phase II trial</td>
<td>178</td>
<td>12</td>
<td>1 patient showed signs of partial response, 54% got worse, there were signs of toxicity</td>
<td>Informed consent</td>
</tr>
</tbody>
</table>

Abbreviations: bid, two times per day; tid, three times per day; NS, not specified; IV, intravenous; RR, relative risk; CI, confidence interval; MLT, melatonin; IL, interleukin; IGF, insulin-like growth factor; qid, four times per day.
<table>
<thead>
<tr>
<th>First Author, Year, Location</th>
<th>Modality</th>
<th>Dosage</th>
<th>End Points</th>
<th>Design</th>
<th>Sample Size</th>
<th>% Breast Cancer</th>
<th>Findings</th>
<th>Shortcomings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate programs of medical practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clover, 1995, United Kingdom</td>
<td>Homeopathy, acupuncture, autogenic training, diet, Iscador</td>
<td>Treatments varied, dosages not specified</td>
<td>Health-related quality of life measured by Rotterdam Symptoms Checklist and Hospital Anxiety and Depression Scale</td>
<td>Prospective cohort</td>
<td>50</td>
<td>36</td>
<td>Significant improvements in psychological distress and anxiety, stable physical symptoms; the proportion of patients found to have normal anxiety levels increased from 48% to 75%</td>
<td>Informed consent, specifics of intervention, adverse-event reporting</td>
</tr>
<tr>
<td>Energy therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filshie, 1985, United Kingdom</td>
<td>Acupuncture</td>
<td>Points not specified</td>
<td>Pain relief</td>
<td>Phase II trial</td>
<td>183</td>
<td>20</td>
<td>52% of patients significantly helped, 47% had reduced pain; 47% of postsurgery, chemotherapy, radiation therapy breast cancer patients reported improved power and pain relief from first to fourth visit</td>
<td>Informed consent, specifics of intervention, adverse-event reporting</td>
</tr>
<tr>
<td>Herbal medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuttan, 1987, India</td>
<td>Topical turmeric and curcumin</td>
<td>0.5% ointment</td>
<td>Smell, itching, exudate, pain, lesion size</td>
<td>Phase II trial</td>
<td>62</td>
<td>11</td>
<td>90% reduction in smell, 70% in exudate, 10% in lesion size, and elimination of almost all itching</td>
<td>Informed consent</td>
</tr>
<tr>
<td>Manual healing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sims, 1986, United Kingdom</td>
<td>Slow stroke back massage</td>
<td>310-min massages</td>
<td>Symptom distress (nausea, pain, appetite, etc), mood</td>
<td>Randomized crossover</td>
<td>6</td>
<td>100</td>
<td>Statistically nonsignificant reduction in symptom distress</td>
<td>Study participants, informed consent, sample size</td>
</tr>
<tr>
<td>Mind/body control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arathuzik, 1994, Boston, MA</td>
<td>Relaxation, visualization and cognitive coping skills training</td>
<td>75- to 120-min sessions</td>
<td>Perceptions of pain intensity, pain distress, pain control, anxiety, depression, hostility, fatigue, confusion, and vigor</td>
<td>Randomized clinical trial</td>
<td>24</td>
<td>100</td>
<td>No significant differences in pain intensity and distress or mood, significant differences in ability to decrease pain ((P = .05))</td>
<td></td>
</tr>
<tr>
<td>Beck, 1991, Salt Lake City, UT</td>
<td>Music therapy</td>
<td>245-min sessions with music for 3 days</td>
<td>Pain, anxiety, depression</td>
<td>Randomized crossover</td>
<td>15</td>
<td>47</td>
<td>75% had at least some response to music, statistically significant decrease in pain ((P < .05)), no effect on mood, no significant difference between sound and music</td>
<td></td>
</tr>
<tr>
<td>Davis, 1986, Canada</td>
<td>Biofeedback and cognitive therapy</td>
<td>4 biweekly 45-min session and 3 once-weekly sessions</td>
<td>Urinary cortisol and state anxiety</td>
<td>Randomized clinical trial</td>
<td>25</td>
<td>100</td>
<td>Greater improvement in treatment groups v controls, cognitive group better on cortisol, biofeedback better on anxiety</td>
<td>Informed consent</td>
</tr>
</tbody>
</table>
Table 4. Continued

<table>
<thead>
<tr>
<th>First Author, Year, Location</th>
<th>Modality</th>
<th>Dosage</th>
<th>End Points</th>
<th>Design</th>
<th>Sample Size</th>
<th>% Breast Cancer</th>
<th>Findings</th>
<th>Shortcomings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiegel, 1983, Stanford, CA</td>
<td>Hypnosis and support groups</td>
<td>Weekly 90-min sessions over 1 yr</td>
<td>Self-rated pain</td>
<td>Randomized clinical trial</td>
<td>58 followed to end point, 86 recruited</td>
<td>100</td>
<td>Controls reported most pain, hypnosis group least, support group members median amount (P < .05)</td>
<td></td>
</tr>
<tr>
<td>Chlebowski, 1987, Los Angeles, CA</td>
<td>Hydrazine sulfate</td>
<td>60 mg tid</td>
<td>Weight gain, appetite, caloric intake, toxicity</td>
<td>Phase II-III trial</td>
<td>101</td>
<td>7</td>
<td>Treatment group had better weight control, appetite, and caloric intake (P < .05) and more toxic effects, although these effects were generally mild</td>
<td></td>
</tr>
<tr>
<td>Lissoni, 1995, Italy</td>
<td>Melatonin IL-2</td>
<td>40 mg/d, 3 million IU/d</td>
<td>Platelet counts</td>
<td>Phase II trial</td>
<td>20</td>
<td>30</td>
<td>70% achieved normalization of platelet counts</td>
<td></td>
</tr>
<tr>
<td>Lissoni, 1996, Italy</td>
<td>Melatonin and/or supportive care (NSAIDS, opioid drugs, and corticosteroids)</td>
<td>20 mg/d</td>
<td>Weight loss, toxicity, disease progress, TNF-α</td>
<td>Randomized clinical trial</td>
<td>100*</td>
<td>19</td>
<td>Weight loss > 10% in 4% treatment group (melatonin plus supportive care) and 32% controls (supportive care alone) (P < .01); no melatonin toxicity observed; percent progressive disease was significantly less in treatment group (53% v 90%; P < .05); mean serum TNF increased in comparison group (ns) and significantly decreased in melatonin group (P < .05)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: NSAIDS, nonsteroidal antiinflammatory drugs; TNF, tumor necrosis factor; ns, not significant.

*All patients had untreatable metastatic solid tumors.
Table 5. Studies of the Effects of Unconventional Therapies on Immune Function in Breast Cancer Patients

<table>
<thead>
<tr>
<th>First Author, Year, Location</th>
<th>Modality</th>
<th>Dosage</th>
<th>End Points</th>
<th>Design</th>
<th>Sample Size</th>
<th>% Breast Cancer</th>
<th>Findings</th>
<th>Shortcomings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet, nutrition, and lifestyle change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black, 1984, Valhalla, NY</td>
<td>Diet, nutrition, and lifestyle change</td>
<td>High-dose vitamins: A, E</td>
<td>Skin window reactivity to gp55 (a marker of cell-mediated immune function)</td>
<td>Phase I trial</td>
<td>30</td>
<td>100</td>
<td>Reaction to gp55 among > 60% only at high doses of vitamin A or vitamin E for > 18 days</td>
<td>Specifics of intervention, measurement of outcomes</td>
</tr>
<tr>
<td>Brittenden, 1994, United Kingdom</td>
<td>l-Arginine supplementation</td>
<td>30 g/d</td>
<td>Peripheral-blood lymphocyte mitogen transformation assays, NK cell cytotoxicity, cytokines</td>
<td>Phase II trial</td>
<td>24</td>
<td>100</td>
<td>l-Arginine significantly increased lymphocyte mitogenic reactivity and enhanced NK cell and lymphokine-activated killer cell cytotoxicity (P < .001)</td>
<td>Informed consent</td>
</tr>
<tr>
<td>Garritson, 1995, Denton, TX</td>
<td>Low-fat diet and fish high in omega-3 fatty acids</td>
<td></td>
<td>T-cell function, urinary prostaglandins, NK cells, B cells</td>
<td>Phase II trial</td>
<td>9</td>
<td>100</td>
<td>Increased CD4 percentages and proliferation, decreased cytotoxic/suppressor T-cell (CD8) percentages and increased CD4/CD8 ratios (P < .05); did not change cytolytic activity of T cells, NK cells, total T and B cells, or urinary prostaglandins significantly</td>
<td>Sample size, adverse-event reporting (NA)</td>
</tr>
<tr>
<td>Energy therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chengjiang, 1987, China</td>
<td>Microwave acupuncture Other therapy group All patients: vitamin B, leucogen + butyl alcohol; some patients: Chinese herbs, interferon, transfer factor + anion inhalation</td>
<td>25-30 v 20 min/d No dosages specified</td>
<td>WBC counts</td>
<td>Controlled trial, v leukopoietic drugs</td>
<td>49</td>
<td>30</td>
<td>90% treatment group, 80% control responded; P < .001 for response in treatment group, ns in controls</td>
<td>Study justification, study participants, informed consent, adverse-event reporting</td>
</tr>
<tr>
<td>Herbal medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beuth, 1992, Germany</td>
<td>Galactoside-specific lectin from mistletoe</td>
<td>1 ng/kg body weight twice/wk</td>
<td>Pan T cells, helper T cells, NK cells, IL-2 and HLA-DQ receptors</td>
<td>Phase II trial</td>
<td>10</td>
<td>100</td>
<td>Increased levels of all immune function parameters with treatment</td>
<td>Sample size</td>
</tr>
<tr>
<td>Hajto, 1986, Switzerland</td>
<td>Iscador Mean dose, 36 mg/kg, single IV infusion</td>
<td></td>
<td>LGL NK cell activity</td>
<td>Phase II trial</td>
<td>20</td>
<td>100</td>
<td>LGL and NK cell activity increased 24 h after IV Iscador infusion</td>
<td>Informed consent</td>
</tr>
<tr>
<td>Hajto, 1986, Switzerland</td>
<td>Iscador Mean dose, 21-38 mg/kg, single IV infusion</td>
<td></td>
<td>Changes in immunomodulatory parameters</td>
<td>Phase II trial</td>
<td>22</td>
<td>100</td>
<td>Significant enhancement of immunomodulatory parameters</td>
<td></td>
</tr>
<tr>
<td>First Author, Year, Location</td>
<td>Modality</td>
<td>Dosage</td>
<td>End Points</td>
<td>Design</td>
<td>Sample Size</td>
<td>% Breast Cancer</td>
<td>Findings</td>
<td>Shortcomings</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>--------</td>
<td>------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Heiny, 1994, Germany</td>
<td>Iscador</td>
<td>1 ng/kg body weight twice/wk</td>
<td>Lymphocyte counts, cytokine release, β-endorphin levels</td>
<td>Phase II trial</td>
<td>36</td>
<td>100</td>
<td>Stabilization of lymphocyte counts, increased cytokine release, increased β-endorphin levels</td>
<td>Informed consent, adverse-event reporting</td>
</tr>
<tr>
<td>Hou, 1991, China</td>
<td>Simple and compound gymnostemma pentaphyllum makino and radix astragali seu hedyari</td>
<td>30 g/d both compounds</td>
<td>Lymphocyte transformation test, immunoglobulin levels</td>
<td>Randomized clinical trial</td>
<td>40</td>
<td>20</td>
<td>Lymphocyte transformation test enhanced in both gymnostemma groups (P < .05)</td>
<td>Study justification, informed consent, adverse-event reporting</td>
</tr>
<tr>
<td>Li, 1993, China</td>
<td>Yi Qi Sheng Xue decoction</td>
<td>1 dose/d</td>
<td>WBC counts</td>
<td>Randomized clinical trial</td>
<td>62</td>
<td>53</td>
<td>13% leukopenia morning treatment, 48% evening (P < .01)</td>
<td>Study justification, informed consent, adverse-event reporting</td>
</tr>
<tr>
<td>Mind/body control</td>
<td>Relaxation, guided imagery, biofeedback</td>
<td>Practice twice daily</td>
<td>Immune response assays, electromyographic activity, temperature, psychological status</td>
<td>Crossover, nonrandom</td>
<td>13</td>
<td>100</td>
<td>Intervention produced significant effects on immune measures, no psychological changes</td>
<td></td>
</tr>
<tr>
<td>Richardson, 1997, Aliso Viejo, CA</td>
<td>Support groups or imagery sessions</td>
<td>Weekly</td>
<td>NK cell cytotoxicity, cytokine levels, β-endorphin levels, quality of life</td>
<td>Randomized clinical trial</td>
<td>47</td>
<td>100</td>
<td>No significant differences among those receiving support groups or imagery sessions and standard care for any measure of immune function, Improved coping strategies for support group participants (P < .01) and imagery sessions (ns). All women, regardless of treatment group, reported improved quality of life</td>
<td>Informed consent, adverse-event reporting (NA)</td>
</tr>
</tbody>
</table>

Abbreviations: NK, natural killer; LGL, large granular lymphocyte.
Table 6. Studies of the Effect of Unconventional Therapies on Side Effects of Conventional Treatment

<table>
<thead>
<tr>
<th>First Author, Year, Location</th>
<th>Modality</th>
<th>Dosage</th>
<th>End Points</th>
<th>Design</th>
<th>Sample Size</th>
<th>% Breast Cancer</th>
<th>Findings</th>
<th>Shortcomings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet, nutrition, and lifestyle change</td>
<td>Loprinzi, 1996, Rochester, MN</td>
<td>Dietician counseling</td>
<td>6 monthly sessions</td>
<td>Weight gain during chemotherapy</td>
<td>Randomized controlled trial</td>
<td>107</td>
<td>100</td>
<td>Median weight gain 2.0 kg in treatment group and 3.5 kg in control group (ns), more calorie reduction in treatment group, significantly more on weekends ($P < .05$)</td>
</tr>
<tr>
<td></td>
<td>Myers, 1983, Bethesda, MD</td>
<td>N-acetylcysteine</td>
<td>5.5 g/m^2</td>
<td>Ejection fractions, congestive heart failure, tumor response</td>
<td>Treatment group matched to untreated controls</td>
<td>54</td>
<td>24</td>
<td>Ejection fractions and heart failure rates similar in both groups, 33% controls, 50% treatment group, partial remission or stable disease (not an a priori end point)</td>
</tr>
<tr>
<td>Energy therapies</td>
<td>Dundee, 1990, Ireland</td>
<td>Sea band after P6 acupuncture</td>
<td>Patients pressed P6 point with band 5 min every 2 h</td>
<td>Nausea and vomiting</td>
<td>Phase II trial</td>
<td>40</td>
<td>38</td>
<td>Antiemetic action of P6 acupuncture was maintained for 24 h in 95% of patients</td>
</tr>
<tr>
<td></td>
<td>Dundee, 1989, Ireland</td>
<td>Electroacupuncture</td>
<td>15 min at P6 point</td>
<td>Vomiting and nausea</td>
<td>Crossover with placebo control, nonrandom</td>
<td>130</td>
<td>49</td>
<td>61 of 64 breast cancer patients reported a benefit from electroacupuncture for an 8-h period</td>
</tr>
<tr>
<td></td>
<td>Lundeberg, 1988, Sweden</td>
<td>Electrical nerve stimulation</td>
<td>2 h twice/d</td>
<td>Skin flap survival and blood flow</td>
<td>Randomized clinical trial</td>
<td>24</td>
<td>100</td>
<td>Skin flap survival and blood flow</td>
</tr>
<tr>
<td>Herbal medicine</td>
<td>Maiche, 1991, Sweden</td>
<td>Chamomile cream v almond ointment</td>
<td>Applied to skin bid, 30 min before irradiation and before bed</td>
<td>Skin radiation reaction</td>
<td>Simultaneous treatments, patient as own control</td>
<td>50</td>
<td>100</td>
<td>No significant difference in skin reactions, both had < 10% severe reactions</td>
</tr>
<tr>
<td>Manual healing</td>
<td>Hornsby, 1995, United Kingdom</td>
<td>Graduated compression sleeve</td>
<td>28 days</td>
<td>Arm circumference, degree lymphoedema</td>
<td>Randomized clinical trial</td>
<td>25</td>
<td>100</td>
<td>Reduction in 86% treatment group and 36% controls</td>
</tr>
<tr>
<td></td>
<td>Zanolla, 1984, Italy</td>
<td>Uniform manual massage</td>
<td>1 wk 6 h/d</td>
<td>Arm circumference</td>
<td>3-arm trial</td>
<td>60</td>
<td>100</td>
<td>Significant reduction in arm circumference for uniform pressure, pneumatic and manual massage, but not for differential pressure; mood improved most in uniform pressure group (ns)</td>
</tr>
<tr>
<td>Pharmacologic and biologic treatments</td>
<td>Lissoni, 1997, Italy</td>
<td>Melatonin</td>
<td>20 mg/d</td>
<td>Chemotherapy toxicity</td>
<td>Randomized controlled trial</td>
<td>80</td>
<td>39</td>
<td>Thrombocytopenia, malaise and asthenia less frequent in melatonin group ($P < .05$); stomatitis and neuropathy less frequent in melatonin group (ns); alopecia and vomiting not different in the two groups</td>
</tr>
</tbody>
</table>
Randomized clinical trials were the second largest group of articles, but only three of them had cancer-directed end points. All three had positive results. However, two of the three were trials of melatonin in study participants with a mix of several types of cancer, primarily with advanced disease; these studies included too few breast cancer patients to yield definitive results with regard to breast cancer. The third was a trial of self-hypnosis and support-group therapy in 86 patients with advanced breast cancer. Most of the other randomized trials had immune function end points that were difficult to interpret.

Nearly half of the articles were phase II studies. The rest were phase I trials or observational studies. Table 7 lists the distribution of the articles by study design and end-point category.

Table 8 summarizes the shortcomings of the articles. For the most part, the articles had few or minor shortcomings, although only 19 of 51 met every criterion. The most frequent shortcoming was failure to report whether informed consent was obtained. In one article, approval of the study by an institutional ethics committee was mentioned, but not informed consent. The second most frequent shortcoming was lack of adverse-event reporting. Nine articles provided inadequate information about study participants, and nine failed to report outcomes intelligibly. Eight failed to supply an adequate rationale for the research described, and four failed to describe the intervention clearly. Only three articles had inadequate sample size for the study design. We found sample size inadequate when multiple end points were assessed or when a clinically significant effect on a single end point could not reasonably have been expected to be detected in the number of patients studied. We did not attempt to come up with a summary score for each article. Here we describe four articles in detail to highlight some of the problems of research in this area.

The first article listed in Table 3 was a cohort study of patients treated at the Bristol Cancer Help Centre in England. This facility offers patients a multimodality, individualized treatment program that emphasizes diet but includes other forms of complementary medicine such as counseling, meditation, yoga, and orthomolecular medicine. In the 1980s, the Centre obtained funding from two leading cancer charities to have a study of its treatment outcomes conducted by investigators at the Institute of Cancer Research. The resulting study, published in *The Lancet*, compared the survival of breast cancer patients who received complementary treatment (in addition to or after conventional treatment) at the Bristol Centre with survival among patients who received standard care in two hospitals. The members in the comparison group were identified through the cancer registries of the two hospitals and were frequency-matched to the Bristol patients on age and time since diagnosis. The article reported that the Bristol patients had poorer survival rates, on average, than the comparison group.
group. The abstract stated that the same data had been obtained on both the Bristol patients and the “control” group. However, in the methods section, informed consent was mentioned only with regard to the Bristol patients, not the comparison group. The article noted that the Bristol patients had also supplied data about the unconventional modalities they used, their quality of life, and other issues, but did not present analyses of these data. The number of deaths among Bristol patients was reported, along with mortality rate ratios and confidence intervals, but the number of deaths in the comparison group was not reported.

This article has been widely criticized. In our rating system, the article failed to meet the criteria of adequacy of information about study participants, justification, measurement of outcomes, and informed consent for controls. The article provided vague and misleading information about study participants and did not present a clear a priori hypothesis or reasons why the Bristol treatment might be expected to affect survival. The presentation of outcome data differed for the Bristol and comparison groups. The explicit mention of informed consent only for the Bristol group indicated that the design was prospective with respect to Bristol but retrospective with respect to the comparison group.

The third paper listed in Table 3 was a study of megavitamin therapy. The survival of patients who adhered to the treatment was longer than that of patients who failed to adhere to it. However, the article did not mention that adherence itself may be a predictor of survival. One author of the article was a psychiatrist; the study participants were patients whom he had treated with the megavitamin therapy. The article provided little in the way of a rationale for using the megavitamin regimen described to improve survival. The article also did not mention informed consent, but the study design was retrospective. The article provided tables of individual data for the 170 patients instead of statistical analysis.

The second article listed in Table 4 was a report on the use of acupuncture for pain relief among 183 cancer patients, including 36 who had just had surgery for breast cancer. The article did not mention informed consent, lacked detail about the intervention, and made no mention of adverse events. The article reported that 47% of patients with breast cancer had less pain and more power in the ipsilateral arm after the fourth treatment than after the first but did not indicate how data on these changes were collected.

The fourth article listed in Table 5 described a Chinese trial of microwave acupuncture versus leukopoietic drugs to reverse neutropenia in 49 patients, including 15 with breast cancer. The article failed to explain why microwave acupuncture might be expected to affect WBC counts and provided little information about study participants, none about informed consent, none about adverse events or toxicities, and none about effects among patients with breast cancer.

DISCUSSION

The literature we reviewed offers little guidance to patients with breast cancer seeking either documentation of the efficacy of popular unconventional therapies or ideas about other ways to improve their prospects for survival or disease-free survival. No data were available about the efficacy of such popular treatments as Essiac (Essiac Products, Inc, Campbellton, New Brunswick, Canada), 714-X (Cerbe West, Quebec, Canada), shark cartilage, or macrobiotic diets for breast cancer.

As Tables 3 to 6 indicate, most of the studies we found reported favorable results but involved small numbers of patients with breast cancer or were intended to collect preliminary data for larger studies. Such studies should not be criticized for not being definitive. However, positive results of any sort pose serious temptations and problems of interpretation to patients yearning for a glimmer of hope. The increasing access of patients to preliminary data places a responsibility on investigators to highlight the limitations of their findings. The history of clinical cancer research is replete with examples of treatments that seemed promising in the laboratory or in a small number of patients who were monitored for a short time, but were ineffective or had intolerable side effects in larger or longer clinical trials.

It is not surprising that our search turned up few phase III studies of unconventional treatments with cancer-directed end points. Treatments that show a benefit when studied in this way are by definition no longer “unproven.” Historically, bias against unconventional approaches, or a more general bias against research endeavors that run contrary to the conventional wisdom, may have limited the funding or “publishability” of the results of studies of unconventional treatments for breast cancer. In addition, although input from practitioners may be critically important to the design and conduct of research on unconventional therapies, many practitioners of unconventional modalities lack formal research training. However, even established investigators tell anecdotes about having explored unconventional approaches in a spirit of genuine scientific curiosity and finding the results of these efforts difficult to publish and their willingness to look into the unconventional dangerous to their reputations and careers. On the other hand, when conventionally credentialed investigators have published CAM studies with unfavorable results, a public outcry has ensued.

Of course, no study is perfect, and practitioners of unconventional therapies often differ among themselves as to the “correct” administration of their treatment. However,
it is clearly important to try to achieve consensus among highly regarded practitioners of an unconventional therapy before undertaking a study. It may also be desirable to include such practitioners on a data and safety monitoring committee both to assure that the treatment is administered in a generally accepted way and to reduce the risk of repudiation of unfavorable results.

Several of the articles we reviewed were written by practitioners of the therapies described who seemed unfamiliar with research methods and scientific reporting but seemed to have made a serious effort to inform the medical community about treatments they believed to be effective. A focused and constructively critical peer-review process might have made these articles more useful.

None of the shortcomings assessed in this review is unique to CAM studies. Obviously, not all studies of conventional therapies have sample sizes appropriate to their design and expected effect size. Likewise, not all reports of conventional clinical studies are based on explicit hypotheses supported by literature and/or a clear chain of reasoning; provide enough information about study participants, interventions, and outcomes to enable a reader to replicate the study; either confirm that informed consent was obtained or explain why it was not; and report the numbers and types of adverse events that occurred during the intervention and follow-up period in the intervention and comparison group. In some studies, no adverse events occur, but no treatment can be assumed to be completely harmless.

However, it is appropriate to hold studies of unconventional therapies to a higher standard for three reasons:

1. Regular readers of the biomedical literature on a particular topic tend to share a common understanding of the issues believed to be relevant to it. Such readers need relatively few cues to find their way through articles based on these common assumptions. Reports about unconventional treatments must provide the context, make their assumptions explicit, and justify their hypotheses solidly to be taken seriously by readers unfamiliar with these modalities.

2. When advocates or practitioners of unconventional therapies fail to disclose the details of an intervention, they weaken the scientific credibility of their results. A variety of CAM treatments seem to have short-term immunostimulatory effects. The relevance of these effects to breast cancer survival is unclear. Although immunocompromised individuals have a higher risk than others of developing some cancers, such as skin cancers and lymphomas, they are not at higher risk for breast cancer. However, cancer and conventional therapy are known to have adverse effects on immune function, and low cell counts affect treatment schedules. Immunostimulatory agents may therefore be useful adjuncts to conventional treatment if they do not interfere with the ability of the conventional treatment to kill tumor cells. Indeed, a critically important question about all agents used to relieve the side effects of chemotherapy and radiation therapy, including effects on immune function, is whether and, if so, how they alter the effect of the treatment on cancer cells.

3. When conventionally credentialed investigators make vague or misleading statements about research on unconventional therapies, particularly when this research has negative results that are widely publicized, they undermine the credibility of science among both advocates of these therapies and the general public. Little is known about the implications of immune parameters for breast cancer outcomes. In general, more immune cells and greater immune system activity would seem to be beneficial to patients with breast cancer. How-
ever, that may not always be true; immunosuppressed kidney transplant patients have lower risk of breast cancer than the general population.37

Many studies with immune parameter end points assess many aspects of immune function simultaneously. If several studies of treatment X find significant associations with the same immune parameter, then it may be reasonable to conclude that treatment X has caused that effect. However, that finding does not mean that patients who receive treatment X will survive longer than other patients. Some aspects of immune function, such as natural-killer cell activity, do seem to be related to cancer survival.35,38 But immune function can involve inflammation, pain, allergic reactions, and other effects that are not necessarily related to survival and do not enhance the quality of life of the patient. Moreover, some agents that seem to stimulate immune cell proliferation also may stimulate cancer cell proliferation.39

In recent years, cancer immunology has become one of the most rapidly growing fields in basic cancer research. A number of scientists are now seeking ways to promote host antitumor immune cell activity and to overcome the ability of the cancer cell to evade immune surveillance.40 These approaches are intended, like chemotherapy and radiation therapy, to cause the destruction of tumor cells but to be much more cancer-specific than existing treatments and therefore less harmful to normal cells. These approaches are based on evidence for the phenomenon of immune surveillance against cancer, which is also a selected group of study participants.46

Many patients turn to CAM when experiencing the side effects of conventional breast cancer treatment. Acupuncture seems to relieve nausea and vomiting associated with chemotherapy. Massage and pressure after mastectomy seem to reduce lymphedema. Mind/body methods of treatment also show some potential to reduce the pain and stress experienced by women undergoing treatment for breast cancer.

However, in general, the studies we reviewed are either too preliminary or too heterogeneous to provide clear direction for patients with breast cancer. What is lacking in the literature is more notable than what is present. This situation is now changing. Leading biomedical journals have publicized their interest in studies of CAM treatments.41 In addition, several new journals have been established to publish articles about them. These new journals and some older ones are now covered by Medline and other widely used scientific bibliographic databases.

An increasing number of studies of CAM for cancer are in progress at reputable institutions. In addition, hospitals are opening facilities to provide some unconventional treatments.42 Investigators in these settings may have unprecedented opportunities to study the treatments being provided. Although some holistic approaches, such as traditional Chinese medicine, do not lend themselves easily to the standard clinical trial design, investigators have successfully studied such approaches in a randomized trial.43 Other designs, such as observational studies, could also be used to assess them. Analytic techniques such as propensity scoring44 and sensitivity analysis45 may be useful in settings where recruitment or compliance with random assignment may be difficult to achieve or result in an excessively selected group of study participants.46

Common single-agent treatments, such as Essiac tea, lend themselves more readily to standard clinical trial design. Given that patients are using these agents without any valid data about their effects on breast cancer or their interactions with other treatments, such trials should be conducted promptly. The expansion of the National Center for Complementary and Alternative Medicine and of funding from private sources for CAM research, the advent of specialized CAM journals, and the increasing interest of leading biomedical journals in CAM research support the expectation that within the next few years, evidence regarding the safety and efficacy of some forms of CAM will become available.

ACKNOWLEDGMENT

We acknowledge the contributions of Daniel Eskinazi, Alison Estabrook, Pam Factor-Litvak, Adrianne Fugh-Berman, Victor R. Grann, Eric Grund, Deborah D. Kennedy, Michael Lerner, Ralph Moss, Alfred I. Neugut, Gwen Nichols, Ruby Senie, Linda Vahdat, and Christine Wade, who read and commented on earlier drafts of the manuscript.

REFERENCES

17. Hoffer A, Pauling L: Hardin Jones biostatistical analysis of mortality data for a second set of cohorts of cancer patients with a large fraction surviving at the termination of the study and a comparison of survival times of cancer patients receiving large regular doses of vitamin C and other nutrients with similar patients not receiving these doses. J Orthomol Med 8:157-167, 1993
41. Fontanarosa PB, Lundberg GD: Complementary, alternative, unconventional, and integrative medicine: Call for papers for the annual coordinated theme issues of the AMA journals. JAMA 278:2111-2112, 1997
42. Area hospitals going holistic. Crain’s Health Pulse February 22, 1999
Thus, unlike biomedical research that typically examines parts of health care and parts of the individual, one at a time, but not the complete system, integrative outcomes research advocates the study of the whole. The whole system includes the patient-provider relationship, multiple conventional and CAM treatments, and the philosophical context of care as the intervention. Many cancer patients within developed nations cite the media as informing their decisions to use complementary and alternative medicine (CAM). To assess complementary and alternative medicine (CAM) therapies being utilized by cancer patients during treatment and communication about CAM usage between the patient and physician.

@article{Jacobson2000ResearchOC, title={Research on complementary/alternative medicine for patients with breast cancer: a review of the biomedical literature.}, author={Judith S. Jacobson and Sue B. Workman and Fredi Kronenberg}, journal={Journal of clinical oncology : official journal of the American Society of Clinical Oncology}, year={2000}, volume={18 3}, pages={. PURPOSE This article reviews English-language articles published in the biomedical literature from 1980 to 1997 that reported results of clinical research on complementary and alternative medical treatments (CAM) of interest to patients with breast cancer.