<table>
<thead>
<tr>
<th>Paper</th>
<th>Sub. Code</th>
<th>Paper Title</th>
<th>Instruction Hrs/ Week</th>
<th>Duration of Exam (in Hrs)</th>
<th>Max. Marks</th>
<th>IA and Assign.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STAS1-I</td>
<td>Linear Algebra and Linear Models (LA and LM)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>STAS1-II</td>
<td>Probability Theory (PT)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>STAS1-III</td>
<td>Distribution Theory and Estimation (DT and ET)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>STAS1-IV</td>
<td>Sampling Theory and Surveys (ST)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

THEORY

PRACTICALS

| V | STAS1-V | C++ Programming | 8 | 3 | 100 | *** | 4 |
| VI | STAS1-VI | Linear Algebra, Linear Models, Distribution Theory, Estimation and Sampling Theory (LA, LM, DT, ET, ST) | 8 | 3 | 100 | *** | 4 |

| Total | | | **32** | *** | **520** | 80 | 24 |
| | Semester Total | | | | | | | **600** |

DEPARTMENT OF STATISTICS
UNIVERSITY COLLEGE OF SCIENCE
OSMANIA UNIVERSITY, HYDERABAD – 500 007

M.Sc. APPLIED STATISTICS
CBCS - SCHEME OF INSTRUCTION AND EXAMINATION
WITH EFFECT FROM 2016 – 2017

SEMESTER I
UNIT – I

UNIT–II

UNIT – III

UNIT – IV
Simple Linear regression – precision of the estimated regression, examining the regression equation - lack of fit and pure error. Analysis of multiple regression model, estimation and testing of regression parameters, Sub-hypothesis. Testing a general linear hypothesis., Multiple and partial correlations - derivation and testing. Use of dummy variables in multiple regression. Polynomial regression- Use of orthogonal polynomials

REFERENCES
5. Draper and Smith:Applied Regression Analysis ,John Wiley
UNIT – I

UNIT – II

Characteristic function and its properties, Uniqueness theorem and Inversion theorem, examples. (Functions which can not be Characteristic functions). Statement of Levy’s continuity theorem. Probability and moment inequalities: Chebychev’s, Markov, Cauchy-Schwartz, Holder, Minkowsky, Liapunov and Jensen Inequalities.

UNIT – III

Sequence of random variables – Borel-Cantelli Lemma; Borel 0-1 law. Convergence of sequence of random variables – convergence in law; convergence in probability; convergence in quadratic mean; convergence with probability one (almost sure convergence); Their implications and/or counter implications; Slutzky’s theorem and its applications. Statement of Glivenko-Cantelli lemma.

UNIT – IV

Weak law of large numbers – Bernoulli and Khintchine’s WLLNs. Kolmogorov inequality. Strong law of large numbers – Borel’s SLLNs. Kolmogorov’s SLLNs for independent random variables and i.i.d. random variables, examples.

REFERENCES

ADDITIONAL REFERENCES

M.Sc. (Applied Statistics) Semester I
STAS1-III : Paper III - Distribution Theory and Estimation (DT and ET)

UNIT – I

UNIT – II
Functions of random variables and their distributions using Jacobian of transformations and Characteristic function. Sampling Distributions of Sample mean and variance, independence of \bar{X} and S^2. Central t, F and χ^2 distributions and their properties. Non-central χ^2, t and F distributions and their properties (Statements only). Distributions of Quadratic forms under normality. Joint and Marginal Distributions of order statistics. Distributions of sample range and quantile.

UNIT – III

UNIT – IV
Method of moments, minimum chi square, Least Squares, MLE and its properties (statements only). Concepts of loss, risk and decision functions, admissible and optimal decision functions, estimation and testing viewed as decision problems, apriori, aposteriori distributions, conjugate families, Baye's and minimax decision functions with applications to estimation with quadratic loss.

REFERENCES

ADDITIONAL REFERENCES

UNIT – I
Review of SRSWR, SRSWOR, Stratified random sampling and Systematic Sampling. Unequal probability Sampling – Probability proportional to size (PPS) sampling with and without replacements (ppswr / wor) methods - drawing samples using Cumulative total and Lahiri’s methods. Horwitz -Thompson, Hansen – Horwitz and Yates and Grundy estimators for population mean, total and their variances.

UNIT – II
Ratio Method of Estimation - Concept of ratio estimators, Ratio estimators in SRS, their bias, variance/MSE. Ratio estimators in Stratified random sampling – Separate and combined estimators, their variances/MSE.
Regression method of estimation – Concept Regression estimators, Regression estimators in SRS with pre-assigned value of regression coefficient (Difference Estimator) and estimated value of regression coefficient, their bias, variance/MSE, Regression estimators in Stratified Random sampling – Separate and combined regression estimators, their variances/ MSE.

UNIT – III
Cluster Sampling - Cluster sampling with clusters of equal sizes, estimator of mean per unit, its variance in terms of intracluster correlation coefficient, determination of optimum sample and cluster sizes for a given cost. Cluster sampling with clusters of unequal sizes, estimator of population mean and its variance/MSE.
Sub sampling (Two–Stage only) - Equal first stage units – Estimator of population mean, variance/MSE, estimator of variance. Determination of optimum sample size for a given cost. Unequal first stage units – estimator of population mean and its variance/MSE.

UNIT – IV
Planning of Sample Surveys - Methods of data collection, problem of sampling frame, choice of sampling design, pilot survey, processing of survey data.
Non-sampling errors - Sources and treatment of non-sampling errors. Non – sampling bias and variance.

REFERENCES

ADDITIONAL REFERENCES
M.Sc. (Applied Statistics) Semester I
STAS1- V : Paper V - Practical (C++ Programming)

List of Practicals:
1) a) Factorial of a number b) Fibonacci series generation
2) a) Pascal triangle b) Pyramid of digits
3) Evaluation of a) e^x b) $\sin x$ c) $\cos x$ using series expansion.
4) Find a) mean b) variance c) standard deviation and d) coefficient of variation for a given set of data.
5) a) Finding correlation coefficient and b) fitting straight line regression and parabolic regression curve.
6) Sorting numbers by bubble sort and finding median and mode of the data.
7) Write a program for preparation of frequency tables using functions and computing mean, median, mode, variance and standard deviation of the frequency distribution.
8) Write a class to a) crate a vector b) modify the values of a given element c) to multiply by a scalar value and d) display the vector in the form of a row vector. Write a main program to test your class.
9) Display and addition of complex numbers and vectors by creating a complex and vector class, respectively.
10) Matrix addition, subtraction and multiplication of confirmable matrices by operator overloading.
11) Concatenation of two strings using operator overloading.
12) File opening, writing records, reading records and updating a file, prepare merit list of students for an entrance examination marks from a file. Write the merit list on some other file and display the same.
13) Define a base class ‘B’ containing one private data member ‘a’ and public data member ‘b’ and three public member functions get_ab (), get_a (Void), show_a (void). Derive a class ‘D’ from the class ‘B’, ‘D’ should contain one private data member ‘C’ and two member functions Mul (void) and Display (void). Define a main program in which create an object for the class and test all the four member functions.
14) Generation of uniform random numbers using virtual functions.
15) Fitting of distributions _ Binomial , Poisson and Negative binomial based on relation between mean and variance.
16) Solution to simultaneous equations by Gauss - Siedal method.

REFERENCES
M.Sc.(Applied Statistics) Semester I
STAS1-VI : Paper VI - Practical (LA, LM, DT, ET, ST)

PRACTICALS IN LINEAR ALGEBRA, LINEAR MODELS, DISTRIBUTION THEORY, ESTIMATION AND SAMPLING

LINEAR ALGEBRA

1. Inverse of a matrix by partition method.
2. Solutions of linear equations by sweep-out method.
5. Formation of characteristic equation by using traces of successive powers.

LINEAR MODELS

1. Fitting of a simple linear regression model - Computation of Pure error and lack of fit.
2. Fitting of Multiple Regression models with Two and Three Independent variables and testing of regression parameters
3. Computation and Testing of Multiple Correlation coefficient.

DISTRIBUTION THEORY AND ESTIMATION

1. Fitting of an appropriate discrete distribution
 (i) Binomial
 (ii) Poisson
 (iii) Negative Binomial
2. Fitting of Normal Distribution
3. Fitting of
 (i) Cauchy Distribution
 (ii) Exponential Distribution
 (iii) Pareto Distribution
4. Method of MLE (Scoring Method)

SAMPLING THEORY

1. PPS sampling with and without replacements.
2. Ratio estimators in SRS, comparison with SRS
3. Separate and combined ratio estimators, Comparison.
4. Regression estimators in SRS, Comparison with SRS and Ratio estimators
5. Separate and combined Regression estimators, Comparison.
6. Cluster sampling with equal cluster sizes.
7. Sub sampling (Two–stage sampling) with equal first stage units.
M.Sc. APPLIED STATISTICS

CBCS - SCHEME OF INSTRUCTION AND EXAMINATION
WITH EFFECT FROM 2016 – 2017

SEMESTER II

<table>
<thead>
<tr>
<th>Paper</th>
<th>Sub. Code</th>
<th>Paper Title</th>
<th>Instruction Hrs/ Week</th>
<th>Duration of Exam (in Hrs)</th>
<th>Max. Marks</th>
<th>IA and Assign.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STAS2-I</td>
<td>Statistical Inference (SI)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>STAS2-II</td>
<td>Applied Regression Analysis (ARA)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>STAS2-III</td>
<td>Multivariate Data Analysis (MDA)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>STAS2-IV</td>
<td>Design of Experiments (DOE)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

PRACTICALS

| V | STAS2-V | Statistical Inference and Applied Regression Analysis (SI, ARA) | 8 | 3 | 100 | *** | 4 |
| VI | STAS2-VI | Multivariate Data Analysis and Design of Experiments (MDA, DOE) | 8 | 3 | 100 | *** | 4 |

| Total | | | 32 | *** | 520 | 80 | 24 |
| Semester Total | | | | | 600 | | |
UNIT – I

UNIT – II
Concepts of unbiased and consistent tests. Likelihood Ratio Criterion with simple applications (including homogeneity of variances). Statements of asymptotic properties of LR test. Confidence Intervals (based on fixed sample size and distributions for the parameters of Normal, exponential, Binomial, Poisson distributions). Relationship between confidence intervals and hypothesis testing. The concept of robustness in testing.

UNIT – III

UNIT – IV
Notions of sequential vs. fixed sample size techniques. Wald’s sequential probability Ratio Test (SPRT) for testing Simple null Hypothesis vs. simple alternative. Termination property of SPRT. SPRT procedures for Binomial, Poisson, Normal and exponential distributions and associated OC and ASN functions. Statement of optimality properties of SPRT.

REFERENCES
3. Myles Hooander and Douglas A. Wolfe – Non parametric Statistical methods (John Wiley and sons)
4. Wald,A. : Sequential Analysis (Dover Publications)

ADDITIONAL REFERENCES
1. C.R. Rao – Linear Statistical Inference (John Wiley)
2. W.J. Conovar – Practical Non parametric Statistics (John Wiley)
UNIT – I

Review of the general regression situation, extra sum of squares principle, orthogonal columns in the X–matrix, partial and sequential F-tests. Bias in regression estimates. Weighted least squares. Introduction to examination of residuals, overall plot, time sequence plot, plot against \(Y_i \), predictor variables \(X_{ij} \). Correlations and serial correlations among the residuals, Durbin–Watson Test. Concept of outliers, Detecting of outliers, standardized residuals. Testing of outliers in linear models.

UNIT – II

Robust regression: Introduction, Least absolute deviation regression (L\(_1\)-regression), M-Estimation Procedure, Least Median squares regression, ranked residuals regression (RREG).

UNIT – III

Logistic regression model – Introduction, Fitting the Logistic regression model, testing for the significance of the coefficients, Introduction to multiple Logistic regression, the multiple Logistic regression models, fitting the multiple logistic regression model, testing for the significance of the model.

Interpretation of the fitted Logistic regression model – Introduction, Dichotomous independent variable. Probit Analysis: Introduction, Analysis of Biological data, sigmoid curve, fitting a Probit Regression line through least squares method.

UNIT – IV

Non-linear regression – Introduction to non-linear regression model, some commonly used families of non-linear regression functions, statistical assumptions and inferences for non-linear regression, linearizable models, determining the Least squares estimates, The Gauss – Newton method, ML estimation, (D and S), Statements of asymptotic properties, Non–linear growth models – Types of models – the Logistic model, the Gompertz model.
REFERENCES

5. Applied Regression Analysis, linear models and related methods: John Fox
8. Linear Models for unbalanced Data: Shayler Searle
9. Residuals and Influence in Regression: R. Dennis Cook and Sanford Weisberg
UNIT – I

UNIT – II

Hotelling’s T^2 and Mahalanobis D^2 statistics, null distribution of Hotellings’ T^2, wilks λ criterion and statement of its properties. Concepts of discriminant analysis, computation of linear discriminant function, classification between K (≥ 2), multivariate normal populations based on LDF and Mahalanobis D^2.

UNIT – III

Path analysis and computation of path coefficients, introduction to multidimensional scaling. Classical solution: some theoretical results, similarities, metric and non-metric scaling methods. Concepts of analysis of categorical data.

UNIT – IV

REFERENCES

3. Seber : Multivariate Observations
5. Bishop: Analysis of Categorical data.
M.Sc. (Applied Statistics) Semester II
STAS2 – IV : Paper IV - Design of Experiments (DOE)

UNIT – I

Analysis of co-variance: one–way and two–way classifications. Estimation of main effects, interactions and analysis of 2^k factorial experiment in general with particular reference to $k = 2, 3$ and 4 and 3^2 factorial experiments. Multiple comparisons, Fisher Least Significance Difference (L.S.D) test and Duncan’s Multiple range test (DMRT).

UNIT – II

Total and partial confounding in case of $2^3, 2^4$ and 3^2 factorial designs. Concept of Balanced partial confounding. Fractional replications of factorial designs – one-half replication of 2^4 & 2^5 design, one-quarter replication of 2^6 and 2^8 designs. Resolution of a design, Split – plot design.

UNIT – III

Balanced incomplete block design (BIBD) – parametric relations, intra-block analysis, recovery of inter-block information. Partially balanced incomplete block design with two associate classes PBIBD (2) – Parametric relations, intra block analysis. Simple lattice design and Youden-square design.

UNIT – IV

Concept of Response surface methodology (RSM), the method of steepest ascent. Response surface designs. Design for fitting first – order and second – order models. Variance of estimated response. Second order rotatable designs (SORD), Central composite designs(CCD): Role of CCD as an alternative to 3^k design, Notatability of CCD.

REFERENCES

ADDITIONAL REFERENCES
PRACTICALS IN STATISTICAL INFERENCE AND
APPLIED REGRESSION ANALYSIS

STATISTICAL INFERENCE

1. Type I and Type II errors
2. MP tests
3. UMP tests
4. L.R. Tests
5. Wilcoxon Signed rank test
6. Wilcoxon Mann-Whitney test
7. Kolmogorov – Smirnov one sample, two sample tests
8. Ansari – Bradley test for two sample dispersion
9. Kruskal Walli’s test for one way layout
10. Friedman test for two way layout
11. Normal Scores test
12. Kendall’s Tau
13. SPRT procedures for
 (i) Binomial
 (ii) Poisson
 (iii) Normal and computation of their OC function.

APPLIED REGRESSION ANALYSIS

1. Testing of general linear hypothesis.
2. Computation of residuals and their plots.
3. Computation and testing of Serial Correlation.
4. Computation of Partial F for two variable regression model.
5. Computation of all possible regression for three variables using R^2.
6. Probit and Logit analysis
PRACTICALS IN MULTIVARIATE DATA ANALYSIS
AND DESIGN OF EXPERIMENTS

MULTIVARIATE DATA ANALYSIS

1. MLE of parameters of multivariate normal distribution.
2. Computation of Hotellings T^2 and Mahalanobis D^2.
4. Classification between two normal populations by discriminant analysis.
6. Computation of canonical correlations
7. Estimating the factor loading in single factor model.
8. Computation of single linkage method.

DESIGN OF EXPERIMENTS

1. Analysis of 2^3 and 2^4 factorial experiments.
2. Analysis of 3^2 factorial experiment.
3. Analysis of Total and partial confounding of 2^3 factorial design.
4. Analysis of one-half fraction of 2^4 design and one-quarter fraction of 2^5 design.
5. Analysis of Split-plot Design
6. Intra-block analysis of BIBD
7. Intra-block analysis of PBIBD(2)
8. Analysis of Youden-square design
9. Analysis of Simple Lattice design
M.Sc. Applied Statistics

CBCS - Scheme of Instruction and Examination

With effect from 2017 – 2018

Semester III

<table>
<thead>
<tr>
<th>Paper</th>
<th>Sub. Code</th>
<th>Paper Title</th>
<th>Instruction Hrs/ Week</th>
<th>Duration of Exam (in Hrs)</th>
<th>Max. Marks</th>
<th>IA and Assign.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STAS3-I</td>
<td>Operations Research–I (OR-I)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>STAS3-II</td>
<td>Reliability Theory (RT)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>STAS3-III</td>
<td>Elective - I</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>STAS3-IV</td>
<td>Elective - II</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

Practicals

<table>
<thead>
<tr>
<th>Paper</th>
<th>Sub. Code</th>
<th>Paper Title</th>
<th>Instruction Hrs/ Week</th>
<th>Duration of Exam (in Hrs)</th>
<th>Max. Marks</th>
<th>IA and Assign.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>STAS3-V</td>
<td>Operations Research–I and Reliability Theory (OR-I, RT)</td>
<td>8</td>
<td>3</td>
<td>100</td>
<td>***</td>
<td>4</td>
</tr>
<tr>
<td>VI</td>
<td>STAS3-VI</td>
<td>Elective – I and Elective - II</td>
<td>8</td>
<td>3</td>
<td>100</td>
<td>...</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 32 *** 520 80 24

Semester Total

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600</td>
</tr>
</tbody>
</table>

Electives to be offered in Semester III:
1. Forecasting Models (FM)
2. Statistical Process and Quality Control (SPQC)
3. Actuarial Statistics (AS)
M.Sc. (Applied Statistics) Semester III

STAS 3-I : Paper – I : Operations Research-I (OR-I)

Unit–I

Definition and scope of OR: Phases in O.R.; Models and their solutions; decision making under uncertainty and risk.

Duality and complementary slackness theorem, primal dual relation; dual simplex algorithm;

Unit–II

Queuing Theory: Introduction, essential features of Queuing system, Operating characteristics of Queuing system (transient and steady states). Queue length, General relationships among characteristics. Probability distribution in queuing systems, distribution of Arrival and interarrival. Distribution of death (departure) process, service time. Classification of Queuing models and solution of Queuing models; M/M/1:∞/FIFO and M/M/1:N/FIFO

Sequencing and scheduling Problems: 2 machine n-job and 3 machine n-job problems with identical machine sequence for all jobs; 2-job n-machine problem with different machine problem with different routings.

Unit–III

Inventory: Analytical structure of inventory problems; ABC analysis; EOQ problem with and without shortages with (a) production is instantaneous (b) Finite constant rate (c) shortages permitted random models where the demand follows uniform distribution. Multi-item inventory subject to constraints.

Unit–IV

Integer Programming Problem: Gomory’s cutting plane algorithm for pure and mixed IPP; Branch and bound Technique.

Stochastic Programming problem; analysis of chance constrained linear programming under zero order, non randomised decision rule, deterministic equivalents of chance constraints with reference to Normal and Cauchy distributions.

REFERENCES

4. Gillet.: Introduction to O. R.

ADDITIONAL REFERENCES

M.Sc. (Applied Statistics) Semester III
STAS3 - II : Paper II - Reliability Theory (RT)

Unit–I

Unit–II

Reliability of coherent systems – Reliability of Independent components, association of random variables, bounds on systems reliability and improved bounds on system reliability under modular decomposition.

Unit–III

Life Distribution: Survival function – Notion of aging IFR, DFR, DFRA, NBU and NBUE classes, Exponential distributions and its no-ageing property, ageing properties of other common life distribution, closures under formation of coherent structures, convolutions and mixtures of these cases.

Unit–IV

Maintenance and replacement policies, relevant renewal theory, availability theory, maintenance through spares and repair.

Reliability estimation: Estimation of two and three parameter Gamma, Weibull and log normal distributions.

REFERENCES

 Chapter I – Section 1 to 4
 II – Section 1 to 4
 III – Section 1,2,4 and 5
 IV – Section 1 to 4
 VI – Section 1 to 3
 VII – Section 1 to 3, Section 4.1,4.2

3. Balaguru Swamy – Reliability Engineering

4. L.J. Bain: Statistical analysis of Reliability and like testing Marcel Decker.

STAS3 - III : Elective I/II : Forecasting Models (FM)

Unit–I

Forecasting: The role of forecasting in decision-making, forecasting techniques. Smoothing Techniques: Simple Moving Averages, exponential smoothing and Winter's linear and seasonal exponential smoothing.

Unit–II

Unit–III

Linear Non-Stationary Models–Autoregressive integrated and moving average (ARIMA) processes. The three explicit forms for the ARIMA models viz., difference equation, random shock and inverted forms.

Model estimation: Least squares and Maximum likelihood estimation and interval estimation of parameters.

Unit–IV

Model diagnostic checking–Checking the stochastic model. Diagnostic checks applied to residuals.

Forecasting-minimum: Mean square error forecasts and their properties, derivation of the minimum mean square error forecasts, calculating and updating forecasts, probability limits of the forecasts at any lead time.

REFERENCES

2) Box, G.E.P. and Jankins,G.M.(1970) : Time series Analysis (Forecasting and control), Holden day publication.

ADDITIONAL REFERENCES

M.Sc. (Applied Statistics) Semester III
STAS3 - IV : Elective I/II : Statistical Process and Quality Control (SPQC)

Unit–I

Basic concept of process monitoring – Basic principles, Choice of control limits, sample size and sampling frequency, rational subgroups, analysis of patterns on control charts, magnificent seven, nonmanufacturing applications of Statistical process control, Process capability and Process optimisation.

General theory and review of control charts for variable data and attributes : O.C. and A.R.L. functions of control charts, modified control charts for variables and Acceptance control charts for attributes, control by gauging.

Unit–II

Moving Average and exponentially weighted moving average charts, Cu-sum charts using V-Masks and decision intervals, Economic design of X bar chart. Concept of control chart for non-normal distributions, concept of Nonparametric control charts.

Unit–III

Acceptance sampling plans for attribute inspection, single, double and sequential sampling plans and their properties; Rectifying sampling plans for attributes, AOQ, AOQL, designing of R.S.P. for specified AOQL and LTPD. Plans for inspection by variables for one–sided and two–sided specifications; Dodges Continuous sampling Plan–I and its properties modifications over CSP–I.

Unit–IV

Process Capability Analysis: Capability indices Cp, Cpk and Cpm, estimation, confidence intervals and tests of hypotheses relating to capability indices for normally distributed characteristics.

Multivariate quality control, use of control ellipsoid and of utility functions. Concept of TQM, Six sigma.

REFERENCES

ADDITIONAL REFERENCES

Economics of Insurance - Utility theory, insurance and utility theory, models for individual claims and their sums, survival function, curate future lifetime, force of mortality.
Life table and its relation with survival function examples, assumptions of fractional ages, some analytical laws of mortality, select and ultimate tables.

Types of Life insurance products – Term insurance, Whole-life insurance, Endowment insurance and Annuities. Measurement of risk in life insurance and fundamental principles underlying rate-making. Elements of compound interest – Nominal and effective rates of interest, discount, accumulation factor and continuous compounding.

Multiple life functions, joint life and last survivor status, insurance and annuity benefits through multiple life functions, evaluation for special mortality laws. Multiple decrement models, deterministic and random survivorship groups, associated single decrement tables, central rates of multiple decrement, net single premiums and their numerical evaluations. Distribution of aggregate claims, compound Poisson distribution and its applications.

Net premiums: Continuous and discrete premiums, true monthly payment premiums, apportionable premiums, commutation functions, and accumulation type benefits. Net premium reserves: continuous and discrete net premium reserve, reserves on a semi continuous basis, reserves based on true monthly premiums, reserves on an apportionable or discounted continuous basis reserves at fractional durations.
REFERENCES

7. Federation of Insurance Institutes study courses: mathematical basis of Life Assurance F.I.21 (Published by Federation if Insurance Institutes, Bombay).

M.Sc. (Applied Statistics) Semester III
STAS3 - V : Paper V – Practical (OR-I and RT)

Practical in Operations Research–I and Reliability Theory

Operations Research–I

1. Solving an LPP by Dual Simplex Method
2. Solving an LPP by Revised Simplex
5. Sequencing problem with 2 jobs n machine problem by graphical method.
6. Evaluation of project time through CPM and PERT
7. Time cost Analysis for CPM and PERT
8. Integer Programming Problem- Gomery’s cutting plane method.

Reliability Theory

1. Finding Minimal path sets and Minimal cut sets and their representations.
2. Computation of System reliability – parallel, Series and k out of n system.
3. Computations of reliability of Structures when components are independent.
5. Computation of bounds on systems reliability.
6. Graphing the reliability function of the systems when the life times of components are exponentially distributed.
Practical in Forecasting Models and Statistical Process and Quality Control

Forecasting Models

1. Moving Averages and exponential smoothing.
3. Sample and theoretical correlograms.
4. Periodogram analysis.
5. Writing the models in B notation and stationarity and invertability of the models.
6. Classification of ARIMA models and computation of weights.
7. Identification AR, MA and ARMA models.
8. Estimation of parameters in AR, MA and ARMA models.

Statistical Process and Quality Control

1. Construction of X, R and σ - charts and OC curves for X and R charts.
2. Construction of p – chart (with constant and variable sample size) – OC curve for constant sample size.
4. Construction of Simple and Exponentially weighted moving average control chart and simple moving range control chart.
5. Construction of CUSUM chart using tabular approach.
7. Designing Single Sampling Plans for specified p_1, p_2, α and β.
8. OC, ASN Curves for double sampling plans – designing for specified p_1, p_2, α and β.

PRACTICAL ON ACTURIAL SCIENCE

1. Computation of values of utility function.
2. Computation of various components of life tables.
3. Computation of compound interest (nominal and effective rate of interests).
4. Annuities and annuity dues.
5. Computation of premium for Term insurance and Whole life insurance.
7. Construction of multiple decrement table for deterministic survival group.
8. Determination of distribution function, survival function and force of mortality.
M.Sc. APPLIED STATISTICS
CBCS - SCHEME OF INSTRUCTION AND EXAMINATION
WITH EFFECT FROM 2017 – 2018

SEMESTER IV

<table>
<thead>
<tr>
<th>Paper</th>
<th>Sub. Code</th>
<th>Paper Title</th>
<th>Instruction Hrs/ Week</th>
<th>Duration of Exam (in Hrs)</th>
<th>Max. Marks</th>
<th>IA and Assign.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>STAS4-I</td>
<td>Operations Research–II (OR–II)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>STAS4-II</td>
<td>Applied Stochastic Processes (ASP)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>STAS4-III</td>
<td>Elective - I</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>STAS4-IV</td>
<td>Inter Disciplinary Paper (IDC)</td>
<td>4</td>
<td>3</td>
<td>80</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>STAS4-V</td>
<td>Operations Research – II, Applied Stochastic Processes and Elective I (OR–II, ASP, Elect. I)</td>
<td>8</td>
<td>3</td>
<td>100</td>
<td>***</td>
<td>4</td>
</tr>
<tr>
<td>VI</td>
<td>STAS4-VI</td>
<td>Practical with Statistical Packages</td>
<td>8</td>
<td>3</td>
<td>100</td>
<td>...</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Any ONE of the following papers can be taken as Elective Paper:

1. Artificial Neural Networks (ANN)
2. Statistical Pattern Recognition (SPR)
3. Inter Disciplinary Course (IDC):
 - Basic Statistics
 (Only for non-Statistics students)
Unit–I

Non-linear Programming problem – Formulation Generalised Lagrange multiplier technique, Kuhn-Tucker necessary and sufficient conditions for optimality of an NLPP, Wolfe’s and Beale’s Algorithms for solving QPP. Separate Programming Problem; Piecewise linearization method.

Unit–II

Unit–III

Game Theory : 2 person zero sum game, pure strategies with saddle point, mixed strategies with saddle point, principles of dominance and games without saddle point.

Introduction to simulation, generation of random numbers for Uniform, Normal, Exponential, Cauchy and Poisson Distributions. Estimating the reliability of the random numbers, Simulation to Queuing and Inventory problem.

Unit–IV

s-S policy for inventory and its derivation in the case of exponential demand; Models with variable supply and models for perishable Items.

Replacement Problems; Introduction, block and age replacement policies, replacement of items with long life. Machine interference problems.

REFERENCES

ADDITIONAL REFERENCES

M.Sc. (Applied Statistics) Semester IV
STAS4 – II : Paper II - Applied Stochastic Processes (ASP)

Unit–I

Markov Chains: Classification of states, canonical representation of transition probability matrix. Probabilities of absorption and mean times for absorption of the Markov Chain from transient states into recurrent classes. Limiting behaviour of Markov chain: Stationary distribution

Unit–II

Renewal Processes: Renewal process when time is discrete and renewal process with time is continuous, with examples. Renewal function, renewal density, limiting behaviour. Statement of elementary and basic renewal theorems.
Branching Processes: Examples of natural phenomena that can be modelled as a branching process. Probability of extinction; Statement of fundamental theorem of branching processes.
Note: Emphasis is only on statements of theorems and results and their applications.

Unit–III

Stochastic Processes in Biological Sciences: Markov models in population genetics; Recovery, relapse and death due to disease; cell survival after irradiation; compartmental analysis.
Stochastic Processes in communication and information systems: Markov models in storage requirements for unpacked messages; buffer behaviour for batch arrivals; loop transmission systems; a probabilistic model for hierarchical message transfer.
Stochastic Processes in traffic–flow theory; some traffic flow problems; pedestrian traffic on a side–walk; free–way traffic; parking lot traffic; intersection traffic; left–turning traffic; pedestrian delay; headway distribution

Unit–IV

Stochastic Processes in social and behavioural sciences; Markov chain models in the study of social mobility; industrial mobility of labour; educational advancement; labour force planning and management; diffusion of information.
Stochastic Processes in Business Management: Markov models in marketing and accounting; consumer behaviour; selecting a port–folio of credit–risks; term structure; human resource management; income determination under uncertainty.

REFERENCE

ADDITIONAL REFERENCE
M.Sc.(Applied Statistics) Semester IV
STAS4 – III : Elective IA - Statistical Pattern Recognition (SPR)

Unit–I
Basic concepts of pattern recognition. Fundamental problems in pattern recognition. Linear classifiers (Statistical approximation), Linear discriminant function for minimum squared error, L.D.F. for binary outputs; perception learning algorithm.

Unit–II
Nearest neighbour decision rules: description convergence, finite sample considerations, use of branch and bound methods.

Unit–III

Unit–IV
Feature selection and extraction: Interclass distance measures, discriminant analysis, Probabilistic distance measures, Principal Components.

REFERENCES
M.Sc.(Applied Statistics) Semester IV
STAS4 – IV : Elective IB – Artificial Neural Networks (ANN)

Unit – I

Biological Neuron, Biological and Artificial Neuron Models, Characteristics of ANN, McCulloch-Pitts Model, Historical Developments, Potential Applications of ANN. Types of Neuron Activation Function, ANN Architectures, Classification Taxonomy of ANN, Learning Strategy (Supervised, Unsupervised, Reinforcement) and Learning Rules.

Unit – II

Unit – III

Unit – IV

Applications of ANN in classification, clustering, regression, time series forecasting, variable selection and dimensionality reduction.

REFERENCES

4) Neural Networks Chapter in www.statsoft.com

ADDITIONAL REFERENCES

M.Sc.(Applied Statistics) Semester IV
STAS4 – V : Paper V Practical (OR-II, ASP, Elect. I)

Operations Research–II

1. Wolfe and Beale’s methods for QPP
2. Separable Programming problem
3. Dynamic Programming Problem
4. Goal Programming Problem
5. Game Theory
6. Simulation

Applied Stochastic Processes

1. Classification of states of a Markov chain, determination of periods of states and mean recurrence times of recurrent states.
2. Computation of higher order transition probability matrix in a two–state Markov chain using spectral decomposition
3. Probabilities of absorption and mean time for absorption from each transient state into recurrent class.
4. Determination of stationary distribution(s) and evaluation of the same.

Statistical Pattern Recognition

1. Linear Classifiers using LDF
2. Binary outputs using LDF
3. Probability of Errors – Normal distribution with equal covariance matrix
4. Hidden Markov Model
5. Feature relation using P.C.A.

Artificial Neural Networks

1. Forward propagation
2. Backward propagation
3. Classification
4. Clustering
5. Regression
6. Time Series

Note: 1 and 2 by manual computations and 3 to 6 by using Neuro Solutions/SPSS
Practical with SPSS Package for the following topics.

1. Charts and Diagrams
2. Basic Statistics
3. Design of Experiments
4. Multivariate Analysis
5. Time Series Analysis
6. Parametric tests
7. Non–Parametric tests
8. Operations Research (TORA Package)
9. Statistical Quality Control
10. Regression Analysis
UNIT–I

Unit II
Review of permutations and combinations. Deterministic and random experiment, Sample space, event mutually exclusive, equally likely and independent events with examples. Mathematical, Statistical and axiomatic definition of probability. Addition theorem, conditional probability and multiplication theorem of probability. Statistical independence and Bayes theorem –simple examples (all theorems without proofs and only statements).

Unit III
Definition and sample examples of random variables and distribution function, probability mass function and probability density function. Mathematical expectation and moments-simple examples. Discrete probability distributions: Bernoulli, Binomial, Poisson. Geometric, and Negative binomial distributions (concept, definition, statements of mean and variance only) with real life examples. Continuous probability distributions: Uniform, Normal and Exponential distributions (concept, definition, statements of mean, variance and other properties). Empirical bivariate distributions, Covariance, Karl Pearson coefficient, Rank Correlation, Curve fitting by least squares principle. Simple linear regression.

Unit IV
Concept and definition of population, parameter, sample, statistic, sampling distribution and standard error. Properties of Estimates: Unbiased ness, Consistency and Efficiency (concept and definition only), simple examples. Estimation of parameters by method of moments with Binomial, Poisson and Normal distributions. Concept of testing Statistical hypothesis-Definition of Null and Alternative hypothesis, Critical region, Types of errors, level of Significance and Power of a Test. Tests of significance based on Chi-Square, t and F distributions and ANOVA (One and Two way) with examples (No mathematical derivation only methodology).

Note: This course is offered with a Minimum Strength of 15 Students
This Course is For Non Statistics Students Only

References:
1. S.P.Gupta: Statistical Methods
2. B.S.Agarwal: Basic Statistics
It is difficult to be seen at semester’s end. Make an appointment for these dates far ahead of time to ensure a meeting. If you do visit the Writing Center this semester, be sure that you bring specific questions, assignment sheets, and drafts so that the meeting is as productive/effective as possible. The Academic Success Center is less a peer review service than a tutoring service. The semester fee total consists of several smaller fees. Below you will find details about the different fees. From the autumn semester, the fee will amount to 600 NOK. The fee helps fund SiOs student welfare services. Exchange students are generally exempt from paying the fee. For students qualifying for financial support from the Norwegian State Educational Loan Fund, the semester fee has to be paid and the semester registration completed before you get your loan or educational grant.